Step 1 – Generate a bearer token
Login and then create an application from the My account menu .
Generate a bearer token from your new application.
Step 2 – Start a new thread with Stablediffusion
You may select an ai_version_code and an engine. For example : stablediffusion_text2img and stable-diffusion-xl-1024-v0-9 .
Send an http POST request to create a new thread.
bearer = '<<your_token_here>>'
url = "https://app.ai-client.com/api/v1/threads"
payload= { 'ai_version_code' : 'stablediffusion_text2img' }
'Accept' : 'application/json' ,
'Authorization' : 'Bearer ' + bearer
response = requests. request ( "POST" , url, headers=headers, data=payload )
thread = response. json ()[ 'data' ]
import requests
import time
bearer = '<<your_token_here>>'
# CREATE THREAD
# -------------
url = "https://app.ai-client.com/api/v1/threads"
payload={'ai_version_code': 'stablediffusion_text2img'}
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("POST", url, headers=headers, data=payload)
thread = response.json()['data']
print(thread)
import requests
import time
bearer = '<<your_token_here>>'
# CREATE THREAD
# -------------
url = "https://app.ai-client.com/api/v1/threads"
payload={'ai_version_code': 'stablediffusion_text2img'}
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("POST", url, headers=headers, data=payload)
thread = response.json()['data']
print(thread)
This will return :
"guid": "44142638-4934-4bf5-9be7-b4b5a6368f44" ,
"ai_code": "stablediffusion" ,
"ai_version_code": "stablediffusion_text2img" ,
"title": "New thread with Stable Diffusion Image Generation" ,
"created_at": "2023-07-13T19:56:25.000000Z" ,
"updated_at": "2023-07-13T19:56:25.000000Z"
{
"guid":"44142638-4934-4bf5-9be7-b4b5a6368f44",
"ai_code":"stablediffusion",
"ai_version_code":"stablediffusion_text2img",
"title":"New thread with Stable Diffusion Image Generation",
"created_at":"2023-07-13T19:56:25.000000Z",
"updated_at":"2023-07-13T19:56:25.000000Z"
}
{
"guid":"44142638-4934-4bf5-9be7-b4b5a6368f44",
"ai_code":"stablediffusion",
"ai_version_code":"stablediffusion_text2img",
"title":"New thread with Stable Diffusion Image Generation",
"created_at":"2023-07-13T19:56:25.000000Z",
"updated_at":"2023-07-13T19:56:25.000000Z"
}
Step 3 – Create a thread entry to send a message
You may use the thread object to create a new entry with a POST request.
url = "https://app.ai-client.com/api/v1/threads/" + thread [ 'guid' ] + "/entry"
'engine' : 'stable-diffusion-xl-1024-v0-9' ,
'resolution' : '1024x1024' ,
# positive prompt: what we want to see
'prompts[0][text]' : "Delorean hacking time" ,
'prompts[0][weight]' : 1 ,
# negative prompt: what we want to avoid
'prompts[1][text]' : "Clock" ,
'prompts[1][weight]' : -1 ,
'Accept' : 'application/json' ,
'Authorization' : 'Bearer ' + bearer
response = requests. request ( "POST" , url, headers=headers, data=payload )
thread_entry = response. json ()[ 'data' ]
url = "https://app.ai-client.com/api/v1/threads/" + thread['guid'] + "/entry"
payload={
'type': 'request',
'engine' : 'stable-diffusion-xl-1024-v0-9',
'resolution' : '1024x1024',
# positive prompt: what we want to see
'prompts[0][text]' : "Delorean hacking time",
'prompts[0][weight]' : 1,
# negative prompt: what we want to avoid
'prompts[1][text]' : "Clock",
'prompts[1][weight]' : -1,
'images' : 2,
'steps' : 45,
'style' : "neon-punk"
}
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("POST", url, headers=headers, data=payload)
thread_entry = response.json()['data']
print(thread_entry)
url = "https://app.ai-client.com/api/v1/threads/" + thread['guid'] + "/entry"
payload={
'type': 'request',
'engine' : 'stable-diffusion-xl-1024-v0-9',
'resolution' : '1024x1024',
# positive prompt: what we want to see
'prompts[0][text]' : "Delorean hacking time",
'prompts[0][weight]' : 1,
# negative prompt: what we want to avoid
'prompts[1][text]' : "Clock",
'prompts[1][weight]' : -1,
'images' : 2,
'steps' : 45,
'style' : "neon-punk"
}
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("POST", url, headers=headers, data=payload)
thread_entry = response.json()['data']
print(thread_entry)
This will return :
"guid": "c7c088d3-7644-4385-b77c-a3ee98c4eed2" ,
"thread_guid": "44142638-4934-4bf5-9be7-b4b5a6368f44" ,
"text": "Delorean hacking time" ,
"engine": "stable-diffusion-xl-1024-v0-9" ,
"created_at": "2023-07-13T19:56:25.000000Z"
{
"guid":"c7c088d3-7644-4385-b77c-a3ee98c4eed2",
"thread_guid":"44142638-4934-4bf5-9be7-b4b5a6368f44",
"type":"request",
"error":"None",
"content":{
"prompts":[
{
"text":"Delorean hacking time",
"weight":1
},
{
"text":"Clock",
"weight":-1
}
],
"engine":"stable-diffusion-xl-1024-v0-9",
"style":"neon-punk",
"images":2,
"steps":45,
"resolution":"1024x1024"
},
"waiting_response":true,
"credits":0,
"created_at":"2023-07-13T19:56:25.000000Z"
}
{
"guid":"c7c088d3-7644-4385-b77c-a3ee98c4eed2",
"thread_guid":"44142638-4934-4bf5-9be7-b4b5a6368f44",
"type":"request",
"error":"None",
"content":{
"prompts":[
{
"text":"Delorean hacking time",
"weight":1
},
{
"text":"Clock",
"weight":-1
}
],
"engine":"stable-diffusion-xl-1024-v0-9",
"style":"neon-punk",
"images":2,
"steps":45,
"resolution":"1024x1024"
},
"waiting_response":true,
"credits":0,
"created_at":"2023-07-13T19:56:25.000000Z"
}
Step 4 – Wait for a response from Stablediffusion
You must now wait for the AI’s response. The “waiting_response ” property of your thread entry informs you of Stablediffusion’s response.
You may use the thread object to get all the thread entries. Send a GET request. You will see your thread entry of type “request ” and the Stablediffusion thread entry of type “response “.
url = "https://app.ai-client.com/api/v1/threads/" + thread [ 'guid' ] + "/entries"
'Accept' : 'application/json' ,
'Authorization' : 'Bearer ' + bearer
response = requests. request ( "GET" , url, headers=headers )
thread_entries = response. json ()[ 'data' ]
url = "https://app.ai-client.com/api/v1/threads/" + thread['guid'] + "/entries"
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("GET", url, headers=headers)
thread_entries = response.json()['data']
url = "https://app.ai-client.com/api/v1/threads/" + thread['guid'] + "/entries"
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("GET", url, headers=headers)
thread_entries = response.json()['data']
This will return :
"guid": "c7c088d3-7644-4385-b77c-a3ee98c4eed2" ,
"thread_guid": "44142638-4934-4bf5-9be7-b4b5a6368f44" ,
"text": "Delorean hacking time" ,
"engine": "stable-diffusion-xl-1024-v0-9" ,
"waiting_response": false ,
"created_at": "2023-07-13T19:56:25.000000Z"
"guid": "a9e17dcc-a162-41ed-a1b4-94ecc40cdf90" ,
"thread_guid": "44142638-4934-4bf5-9be7-b4b5a6368f44" ,
"url": "https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png" ,
"thumbnail_url": "https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png.thumbnail.jpg" ,
"dimensions": "1024x1024" ,
"url": "https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png" ,
"thumbnail_url": "https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png.thumbnail.jpg" ,
"dimensions": "1024x1024" ,
"waiting_response": false ,
"created_at": "2023-07-13T19:57:09.000000Z"
[
{
"guid":"c7c088d3-7644-4385-b77c-a3ee98c4eed2",
"thread_guid":"44142638-4934-4bf5-9be7-b4b5a6368f44",
"type":"request",
"error":"None",
"content":{
"prompts":[
{
"text":"Delorean hacking time",
"weight":1
},
{
"text":"Clock",
"weight":-1
}
],
"engine":"stable-diffusion-xl-1024-v0-9",
"style":"neon-punk",
"images":2,
"steps":45,
"resolution":"1024x1024"
},
"waiting_response":false,
"credits":0,
"created_at":"2023-07-13T19:56:25.000000Z"
},
{
"guid":"a9e17dcc-a162-41ed-a1b4-94ecc40cdf90",
"thread_guid":"44142638-4934-4bf5-9be7-b4b5a6368f44",
"type":"response",
"error":"None",
"content":[
{
"url":"https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png",
"thumbnail_url":"https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png.thumbnail.jpg",
"dimensions":"1024x1024",
"filesize":1409734
},
{
"url":"https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png",
"thumbnail_url":"https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png.thumbnail.jpg",
"dimensions":"1024x1024",
"filesize":1685147
}
],
"waiting_response":false,
"credits":10,
"created_at":"2023-07-13T19:57:09.000000Z"
}
]
[
{
"guid":"c7c088d3-7644-4385-b77c-a3ee98c4eed2",
"thread_guid":"44142638-4934-4bf5-9be7-b4b5a6368f44",
"type":"request",
"error":"None",
"content":{
"prompts":[
{
"text":"Delorean hacking time",
"weight":1
},
{
"text":"Clock",
"weight":-1
}
],
"engine":"stable-diffusion-xl-1024-v0-9",
"style":"neon-punk",
"images":2,
"steps":45,
"resolution":"1024x1024"
},
"waiting_response":false,
"credits":0,
"created_at":"2023-07-13T19:56:25.000000Z"
},
{
"guid":"a9e17dcc-a162-41ed-a1b4-94ecc40cdf90",
"thread_guid":"44142638-4934-4bf5-9be7-b4b5a6368f44",
"type":"response",
"error":"None",
"content":[
{
"url":"https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png",
"thumbnail_url":"https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png.thumbnail.jpg",
"dimensions":"1024x1024",
"filesize":1409734
},
{
"url":"https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png",
"thumbnail_url":"https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png.thumbnail.jpg",
"dimensions":"1024x1024",
"filesize":1685147
}
],
"waiting_response":false,
"credits":10,
"created_at":"2023-07-13T19:57:09.000000Z"
}
]
Full code example
bearer = '<<your_token_here>>'
url = "https://app.ai-client.com/api/v1/threads"
payload= { 'ai_version_code' : 'stablediffusion_text2img' }
'Accept' : 'application/json' ,
'Authorization' : 'Bearer ' + bearer
response = requests. request ( "POST" , url, headers=headers, data=payload )
thread = response. json ()[ 'data' ]
# {'guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'ai_code': 'stablediffusion', 'ai_version_code': 'stablediffusion_text2img', 'title': 'New thread with Stable Diffusion Image Generation', 'created_at': '2023-07-13T19:56:25.000000Z', 'updated_at': '2023-07-13T19:56:25.000000Z'}
# CREATE THREAD ENTRY OF TYPE request
# -----------------------------------
url = "https://app.ai-client.com/api/v1/threads/" + thread [ 'guid' ] + "/entry"
'engine' : 'stable-diffusion-xl-1024-v0-9' ,
'resolution' : '1024x1024' ,
# positive prompt: what we want to see
'prompts[0][text]' : "Delorean hacking time" ,
'prompts[0][weight]' : 1 ,
# negative prompt: what we want to avoid
'prompts[1][text]' : "Clock" ,
'prompts[1][weight]' : -1 ,
'Accept' : 'application/json' ,
'Authorization' : 'Bearer ' + bearer
response = requests. request ( "POST" , url, headers=headers, data=payload )
thread_entry = response. json ()[ 'data' ]
# {'guid': 'c7c088d3-7644-4385-b77c-a3ee98c4eed2', 'thread_guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'type': 'request', 'error': None, 'content': {'prompts': [{'text': 'Delorean hacking time', 'weight': 1}, {'text': 'Clock', 'weight': -1}], 'engine': 'stable-diffusion-xl-1024-v0-9', 'style': 'neon-punk', 'images': 2, 'steps': 45, 'resolution': '1024x1024'}, 'waiting_response': True, 'credits': 0, 'created_at': '2023-07-13T19:56:25.000000Z'}
url = "https://app.ai-client.com/api/v1/threads/" + thread [ 'guid' ] + "/entries"
'Accept' : 'application/json' ,
'Authorization' : 'Bearer ' + bearer
response = requests. request ( "GET" , url, headers=headers )
thread_entries = response. json ()[ 'data' ]
# [{'guid': 'c7c088d3-7644-4385-b77c-a3ee98c4eed2', 'thread_guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'type': 'request', 'error': None, 'content': {'prompts': [{'text': 'Delorean hacking time', 'weight': 1}, {'text': 'Clock', 'weight': -1}], 'engine': 'stable-diffusion-xl-1024-v0-9', 'style': 'neon-punk', 'images': 2, 'steps': 45, 'resolution': '1024x1024'}, 'waiting_response': False, 'credits': 0, 'created_at': '2023-07-13T19:56:25.000000Z'}, {'guid': 'a9e17dcc-a162-41ed-a1b4-94ecc40cdf90', 'thread_guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'type': 'response', 'error': None, 'content': [{'url': 'https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png', 'thumbnail_url': 'https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png.thumbnail.jpg', 'dimensions': '1024x1024', 'filesize': 1409734}, {'url': 'https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png', 'thumbnail_url': 'https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png.thumbnail.jpg', 'dimensions': '1024x1024', 'filesize': 1685147}], 'waiting_response': False, 'credits': 10, 'created_at': '2023-07-13T19:57:09.000000Z'}]
import requests
import time
bearer = '<<your_token_here>>'
# CREATE THREAD
# -------------
url = "https://app.ai-client.com/api/v1/threads"
payload={'ai_version_code': 'stablediffusion_text2img'}
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("POST", url, headers=headers, data=payload)
thread = response.json()['data']
print(thread)
# {'guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'ai_code': 'stablediffusion', 'ai_version_code': 'stablediffusion_text2img', 'title': 'New thread with Stable Diffusion Image Generation', 'created_at': '2023-07-13T19:56:25.000000Z', 'updated_at': '2023-07-13T19:56:25.000000Z'}
# CREATE THREAD ENTRY OF TYPE request
# -----------------------------------
url = "https://app.ai-client.com/api/v1/threads/" + thread['guid'] + "/entry"
payload={
'type': 'request',
'engine' : 'stable-diffusion-xl-1024-v0-9',
'resolution' : '1024x1024',
# positive prompt: what we want to see
'prompts[0][text]' : "Delorean hacking time",
'prompts[0][weight]' : 1,
# negative prompt: what we want to avoid
'prompts[1][text]' : "Clock",
'prompts[1][weight]' : -1,
'images' : 2,
'steps' : 45,
'style' : "neon-punk"
}
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("POST", url, headers=headers, data=payload)
thread_entry = response.json()['data']
print(thread_entry)
# {'guid': 'c7c088d3-7644-4385-b77c-a3ee98c4eed2', 'thread_guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'type': 'request', 'error': None, 'content': {'prompts': [{'text': 'Delorean hacking time', 'weight': 1}, {'text': 'Clock', 'weight': -1}], 'engine': 'stable-diffusion-xl-1024-v0-9', 'style': 'neon-punk', 'images': 2, 'steps': 45, 'resolution': '1024x1024'}, 'waiting_response': True, 'credits': 0, 'created_at': '2023-07-13T19:56:25.000000Z'}
# WAIT FOR 2 MINUTES
# ------------------
time.sleep(120)
# GET THREAD ENTRIES
# ------------------
url = "https://app.ai-client.com/api/v1/threads/" + thread['guid'] + "/entries"
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("GET", url, headers=headers)
thread_entries = response.json()['data']
print(thread_entries)
# [{'guid': 'c7c088d3-7644-4385-b77c-a3ee98c4eed2', 'thread_guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'type': 'request', 'error': None, 'content': {'prompts': [{'text': 'Delorean hacking time', 'weight': 1}, {'text': 'Clock', 'weight': -1}], 'engine': 'stable-diffusion-xl-1024-v0-9', 'style': 'neon-punk', 'images': 2, 'steps': 45, 'resolution': '1024x1024'}, 'waiting_response': False, 'credits': 0, 'created_at': '2023-07-13T19:56:25.000000Z'}, {'guid': 'a9e17dcc-a162-41ed-a1b4-94ecc40cdf90', 'thread_guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'type': 'response', 'error': None, 'content': [{'url': 'https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png', 'thumbnail_url': 'https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png.thumbnail.jpg', 'dimensions': '1024x1024', 'filesize': 1409734}, {'url': 'https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png', 'thumbnail_url': 'https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png.thumbnail.jpg', 'dimensions': '1024x1024', 'filesize': 1685147}], 'waiting_response': False, 'credits': 10, 'created_at': '2023-07-13T19:57:09.000000Z'}]
import requests
import time
bearer = '<<your_token_here>>'
# CREATE THREAD
# -------------
url = "https://app.ai-client.com/api/v1/threads"
payload={'ai_version_code': 'stablediffusion_text2img'}
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("POST", url, headers=headers, data=payload)
thread = response.json()['data']
print(thread)
# {'guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'ai_code': 'stablediffusion', 'ai_version_code': 'stablediffusion_text2img', 'title': 'New thread with Stable Diffusion Image Generation', 'created_at': '2023-07-13T19:56:25.000000Z', 'updated_at': '2023-07-13T19:56:25.000000Z'}
# CREATE THREAD ENTRY OF TYPE request
# -----------------------------------
url = "https://app.ai-client.com/api/v1/threads/" + thread['guid'] + "/entry"
payload={
'type': 'request',
'engine' : 'stable-diffusion-xl-1024-v0-9',
'resolution' : '1024x1024',
# positive prompt: what we want to see
'prompts[0][text]' : "Delorean hacking time",
'prompts[0][weight]' : 1,
# negative prompt: what we want to avoid
'prompts[1][text]' : "Clock",
'prompts[1][weight]' : -1,
'images' : 2,
'steps' : 45,
'style' : "neon-punk"
}
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("POST", url, headers=headers, data=payload)
thread_entry = response.json()['data']
print(thread_entry)
# {'guid': 'c7c088d3-7644-4385-b77c-a3ee98c4eed2', 'thread_guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'type': 'request', 'error': None, 'content': {'prompts': [{'text': 'Delorean hacking time', 'weight': 1}, {'text': 'Clock', 'weight': -1}], 'engine': 'stable-diffusion-xl-1024-v0-9', 'style': 'neon-punk', 'images': 2, 'steps': 45, 'resolution': '1024x1024'}, 'waiting_response': True, 'credits': 0, 'created_at': '2023-07-13T19:56:25.000000Z'}
# WAIT FOR 2 MINUTES
# ------------------
time.sleep(120)
# GET THREAD ENTRIES
# ------------------
url = "https://app.ai-client.com/api/v1/threads/" + thread['guid'] + "/entries"
headers = {
'Accept': 'application/json',
'Authorization': 'Bearer ' + bearer
}
response = requests.request("GET", url, headers=headers)
thread_entries = response.json()['data']
print(thread_entries)
# [{'guid': 'c7c088d3-7644-4385-b77c-a3ee98c4eed2', 'thread_guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'type': 'request', 'error': None, 'content': {'prompts': [{'text': 'Delorean hacking time', 'weight': 1}, {'text': 'Clock', 'weight': -1}], 'engine': 'stable-diffusion-xl-1024-v0-9', 'style': 'neon-punk', 'images': 2, 'steps': 45, 'resolution': '1024x1024'}, 'waiting_response': False, 'credits': 0, 'created_at': '2023-07-13T19:56:25.000000Z'}, {'guid': 'a9e17dcc-a162-41ed-a1b4-94ecc40cdf90', 'thread_guid': '44142638-4934-4bf5-9be7-b4b5a6368f44', 'type': 'response', 'error': None, 'content': [{'url': 'https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png', 'thumbnail_url': 'https://app.ai-client.com/storage/stablediffusion_text2img/2212c664-7d5b-4fe5-b240-1f5e46e2e70e.png.thumbnail.jpg', 'dimensions': '1024x1024', 'filesize': 1409734}, {'url': 'https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png', 'thumbnail_url': 'https://app.ai-client.com/storage/stablediffusion_text2img/e65893b4-acfb-459d-9ee4-796d724b9689.png.thumbnail.jpg', 'dimensions': '1024x1024', 'filesize': 1685147}], 'waiting_response': False, 'credits': 10, 'created_at': '2023-07-13T19:57:09.000000Z'}]
See our Swagger API documentation for more information.